3.1.87 \(\int \frac {(a+b x+c x^2)^{3/2}}{d-f x^2} \, dx\) [87]

3.1.87.1 Optimal result
3.1.87.2 Mathematica [C] (verified)
3.1.87.3 Rubi [A] (verified)
3.1.87.4 Maple [B] (verified)
3.1.87.5 Fricas [F(-1)]
3.1.87.6 Sympy [F]
3.1.87.7 Maxima [F(-2)]
3.1.87.8 Giac [F(-2)]
3.1.87.9 Mupad [F(-1)]

3.1.87.1 Optimal result

Integrand size = 25, antiderivative size = 315 \[ \int \frac {\left (a+b x+c x^2\right )^{3/2}}{d-f x^2} \, dx=-\frac {(5 b+2 c x) \sqrt {a+b x+c x^2}}{4 f}-\frac {\left (8 c^2 d+3 b^2 f+12 a c f\right ) \text {arctanh}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{8 \sqrt {c} f^2}+\frac {\left (c d-b \sqrt {d} \sqrt {f}+a f\right )^{3/2} \text {arctanh}\left (\frac {b \sqrt {d}-2 a \sqrt {f}+\left (2 c \sqrt {d}-b \sqrt {f}\right ) x}{2 \sqrt {c d-b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 \sqrt {d} f^2}+\frac {\left (c d+b \sqrt {d} \sqrt {f}+a f\right )^{3/2} \text {arctanh}\left (\frac {b \sqrt {d}+2 a \sqrt {f}+\left (2 c \sqrt {d}+b \sqrt {f}\right ) x}{2 \sqrt {c d+b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 \sqrt {d} f^2} \]

output
-1/8*(12*a*c*f+3*b^2*f+8*c^2*d)*arctanh(1/2*(2*c*x+b)/c^(1/2)/(c*x^2+b*x+a 
)^(1/2))/f^2/c^(1/2)+1/2*arctanh(1/2*(b*d^(1/2)-2*a*f^(1/2)+x*(2*c*d^(1/2) 
-b*f^(1/2)))/(c*x^2+b*x+a)^(1/2)/(c*d+a*f-b*d^(1/2)*f^(1/2))^(1/2))*(c*d+a 
*f-b*d^(1/2)*f^(1/2))^(3/2)/f^2/d^(1/2)+1/2*arctanh(1/2*(b*d^(1/2)+2*a*f^( 
1/2)+x*(2*c*d^(1/2)+b*f^(1/2)))/(c*x^2+b*x+a)^(1/2)/(c*d+a*f+b*d^(1/2)*f^( 
1/2))^(1/2))*(c*d+a*f+b*d^(1/2)*f^(1/2))^(3/2)/f^2/d^(1/2)-1/4*(2*c*x+5*b) 
*(c*x^2+b*x+a)^(1/2)/f
 
3.1.87.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 1.00 (sec) , antiderivative size = 729, normalized size of antiderivative = 2.31 \[ \int \frac {\left (a+b x+c x^2\right )^{3/2}}{d-f x^2} \, dx=\frac {-\sqrt {c} f (5 b+2 c x) \sqrt {a+x (b+c x)}+\left (8 c^2 d+3 b^2 f+12 a c f\right ) \text {arctanh}\left (\frac {\sqrt {c} x}{\sqrt {a}-\sqrt {a+x (b+c x)}}\right )-2 \sqrt {c} \text {RootSum}\left [c^2 d-b^2 f+4 \sqrt {a} b f \text {$\#$1}-2 c d \text {$\#$1}^2-4 a f \text {$\#$1}^2+d \text {$\#$1}^4\&,\frac {-c^3 d^2 \log (x)+b^2 c d f \log (x)-2 a c^2 d f \log (x)+2 a b^2 f^2 \log (x)-a^2 c f^2 \log (x)+c^3 d^2 \log \left (-\sqrt {a}+\sqrt {a+b x+c x^2}-x \text {$\#$1}\right )-b^2 c d f \log \left (-\sqrt {a}+\sqrt {a+b x+c x^2}-x \text {$\#$1}\right )+2 a c^2 d f \log \left (-\sqrt {a}+\sqrt {a+b x+c x^2}-x \text {$\#$1}\right )-2 a b^2 f^2 \log \left (-\sqrt {a}+\sqrt {a+b x+c x^2}-x \text {$\#$1}\right )+a^2 c f^2 \log \left (-\sqrt {a}+\sqrt {a+b x+c x^2}-x \text {$\#$1}\right )-4 \sqrt {a} b c d f \log (x) \text {$\#$1}-4 a^{3/2} b f^2 \log (x) \text {$\#$1}+4 \sqrt {a} b c d f \log \left (-\sqrt {a}+\sqrt {a+b x+c x^2}-x \text {$\#$1}\right ) \text {$\#$1}+4 a^{3/2} b f^2 \log \left (-\sqrt {a}+\sqrt {a+b x+c x^2}-x \text {$\#$1}\right ) \text {$\#$1}+c^2 d^2 \log (x) \text {$\#$1}^2+b^2 d f \log (x) \text {$\#$1}^2+2 a c d f \log (x) \text {$\#$1}^2+a^2 f^2 \log (x) \text {$\#$1}^2-c^2 d^2 \log \left (-\sqrt {a}+\sqrt {a+b x+c x^2}-x \text {$\#$1}\right ) \text {$\#$1}^2-b^2 d f \log \left (-\sqrt {a}+\sqrt {a+b x+c x^2}-x \text {$\#$1}\right ) \text {$\#$1}^2-2 a c d f \log \left (-\sqrt {a}+\sqrt {a+b x+c x^2}-x \text {$\#$1}\right ) \text {$\#$1}^2-a^2 f^2 \log \left (-\sqrt {a}+\sqrt {a+b x+c x^2}-x \text {$\#$1}\right ) \text {$\#$1}^2}{-\sqrt {a} b f+c d \text {$\#$1}+2 a f \text {$\#$1}-d \text {$\#$1}^3}\&\right ]}{4 \sqrt {c} f^2} \]

input
Integrate[(a + b*x + c*x^2)^(3/2)/(d - f*x^2),x]
 
output
(-(Sqrt[c]*f*(5*b + 2*c*x)*Sqrt[a + x*(b + c*x)]) + (8*c^2*d + 3*b^2*f + 1 
2*a*c*f)*ArcTanh[(Sqrt[c]*x)/(Sqrt[a] - Sqrt[a + x*(b + c*x)])] - 2*Sqrt[c 
]*RootSum[c^2*d - b^2*f + 4*Sqrt[a]*b*f*#1 - 2*c*d*#1^2 - 4*a*f*#1^2 + d*# 
1^4 & , (-(c^3*d^2*Log[x]) + b^2*c*d*f*Log[x] - 2*a*c^2*d*f*Log[x] + 2*a*b 
^2*f^2*Log[x] - a^2*c*f^2*Log[x] + c^3*d^2*Log[-Sqrt[a] + Sqrt[a + b*x + c 
*x^2] - x*#1] - b^2*c*d*f*Log[-Sqrt[a] + Sqrt[a + b*x + c*x^2] - x*#1] + 2 
*a*c^2*d*f*Log[-Sqrt[a] + Sqrt[a + b*x + c*x^2] - x*#1] - 2*a*b^2*f^2*Log[ 
-Sqrt[a] + Sqrt[a + b*x + c*x^2] - x*#1] + a^2*c*f^2*Log[-Sqrt[a] + Sqrt[a 
 + b*x + c*x^2] - x*#1] - 4*Sqrt[a]*b*c*d*f*Log[x]*#1 - 4*a^(3/2)*b*f^2*Lo 
g[x]*#1 + 4*Sqrt[a]*b*c*d*f*Log[-Sqrt[a] + Sqrt[a + b*x + c*x^2] - x*#1]*# 
1 + 4*a^(3/2)*b*f^2*Log[-Sqrt[a] + Sqrt[a + b*x + c*x^2] - x*#1]*#1 + c^2* 
d^2*Log[x]*#1^2 + b^2*d*f*Log[x]*#1^2 + 2*a*c*d*f*Log[x]*#1^2 + a^2*f^2*Lo 
g[x]*#1^2 - c^2*d^2*Log[-Sqrt[a] + Sqrt[a + b*x + c*x^2] - x*#1]*#1^2 - b^ 
2*d*f*Log[-Sqrt[a] + Sqrt[a + b*x + c*x^2] - x*#1]*#1^2 - 2*a*c*d*f*Log[-S 
qrt[a] + Sqrt[a + b*x + c*x^2] - x*#1]*#1^2 - a^2*f^2*Log[-Sqrt[a] + Sqrt[ 
a + b*x + c*x^2] - x*#1]*#1^2)/(-(Sqrt[a]*b*f) + c*d*#1 + 2*a*f*#1 - d*#1^ 
3) & ])/(4*Sqrt[c]*f^2)
 
3.1.87.3 Rubi [A] (verified)

Time = 0.75 (sec) , antiderivative size = 321, normalized size of antiderivative = 1.02, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.440, Rules used = {1309, 27, 2144, 27, 1092, 219, 1366, 25, 27, 1154, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a+b x+c x^2\right )^{3/2}}{d-f x^2} \, dx\)

\(\Big \downarrow \) 1309

\(\displaystyle \frac {\int \frac {5 d b^2+16 (c d+a f) x b+\left (3 f b^2+8 c^2 d+12 a c f\right ) x^2+4 a (c d+2 a f)}{4 \sqrt {c x^2+b x+a} \left (d-f x^2\right )}dx}{2 f}-\frac {(5 b+2 c x) \sqrt {a+b x+c x^2}}{4 f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {5 d b^2+16 (c d+a f) x b+\left (3 f b^2+8 c^2 d+12 a c f\right ) x^2+4 a (c d+2 a f)}{\sqrt {c x^2+b x+a} \left (d-f x^2\right )}dx}{8 f}-\frac {(5 b+2 c x) \sqrt {a+b x+c x^2}}{4 f}\)

\(\Big \downarrow \) 2144

\(\displaystyle \frac {-\frac {\int -\frac {8 \left (c^2 d^2+2 a c f d+f \left (f a^2+b^2 d\right )+2 b f (c d+a f) x\right )}{\sqrt {c x^2+b x+a} \left (d-f x^2\right )}dx}{f}-\frac {\left (12 a c f+3 b^2 f+8 c^2 d\right ) \int \frac {1}{\sqrt {c x^2+b x+a}}dx}{f}}{8 f}-\frac {(5 b+2 c x) \sqrt {a+b x+c x^2}}{4 f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {8 \int \frac {c^2 d^2+2 a c f d+f \left (f a^2+b^2 d\right )+2 b f (c d+a f) x}{\sqrt {c x^2+b x+a} \left (d-f x^2\right )}dx}{f}-\frac {\left (12 a c f+3 b^2 f+8 c^2 d\right ) \int \frac {1}{\sqrt {c x^2+b x+a}}dx}{f}}{8 f}-\frac {(5 b+2 c x) \sqrt {a+b x+c x^2}}{4 f}\)

\(\Big \downarrow \) 1092

\(\displaystyle \frac {\frac {8 \int \frac {c^2 d^2+2 a c f d+f \left (f a^2+b^2 d\right )+2 b f (c d+a f) x}{\sqrt {c x^2+b x+a} \left (d-f x^2\right )}dx}{f}-\frac {2 \left (12 a c f+3 b^2 f+8 c^2 d\right ) \int \frac {1}{4 c-\frac {(b+2 c x)^2}{c x^2+b x+a}}d\frac {b+2 c x}{\sqrt {c x^2+b x+a}}}{f}}{8 f}-\frac {(5 b+2 c x) \sqrt {a+b x+c x^2}}{4 f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {8 \int \frac {c^2 d^2+2 a c f d+f \left (f a^2+b^2 d\right )+2 b f (c d+a f) x}{\sqrt {c x^2+b x+a} \left (d-f x^2\right )}dx}{f}-\frac {\text {arctanh}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right ) \left (12 a c f+3 b^2 f+8 c^2 d\right )}{\sqrt {c} f}}{8 f}-\frac {(5 b+2 c x) \sqrt {a+b x+c x^2}}{4 f}\)

\(\Big \downarrow \) 1366

\(\displaystyle \frac {\frac {8 \left (\frac {\sqrt {f} \left (a f+b \sqrt {d} \sqrt {f}+c d\right )^2 \int \frac {1}{\sqrt {f} \left (\sqrt {d}-\sqrt {f} x\right ) \sqrt {c x^2+b x+a}}dx}{2 \sqrt {d}}-\frac {\sqrt {f} \left (a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d\right )^2 \int -\frac {1}{\sqrt {f} \left (\sqrt {f} x+\sqrt {d}\right ) \sqrt {c x^2+b x+a}}dx}{2 \sqrt {d}}\right )}{f}-\frac {\text {arctanh}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right ) \left (12 a c f+3 b^2 f+8 c^2 d\right )}{\sqrt {c} f}}{8 f}-\frac {(5 b+2 c x) \sqrt {a+b x+c x^2}}{4 f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {8 \left (\frac {\sqrt {f} \left (a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d\right )^2 \int \frac {1}{\sqrt {f} \left (\sqrt {f} x+\sqrt {d}\right ) \sqrt {c x^2+b x+a}}dx}{2 \sqrt {d}}+\frac {\sqrt {f} \left (a f+b \sqrt {d} \sqrt {f}+c d\right )^2 \int \frac {1}{\sqrt {f} \left (\sqrt {d}-\sqrt {f} x\right ) \sqrt {c x^2+b x+a}}dx}{2 \sqrt {d}}\right )}{f}-\frac {\text {arctanh}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right ) \left (12 a c f+3 b^2 f+8 c^2 d\right )}{\sqrt {c} f}}{8 f}-\frac {(5 b+2 c x) \sqrt {a+b x+c x^2}}{4 f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {8 \left (\frac {\left (a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d\right )^2 \int \frac {1}{\left (\sqrt {f} x+\sqrt {d}\right ) \sqrt {c x^2+b x+a}}dx}{2 \sqrt {d}}+\frac {\left (a f+b \sqrt {d} \sqrt {f}+c d\right )^2 \int \frac {1}{\left (\sqrt {d}-\sqrt {f} x\right ) \sqrt {c x^2+b x+a}}dx}{2 \sqrt {d}}\right )}{f}-\frac {\text {arctanh}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right ) \left (12 a c f+3 b^2 f+8 c^2 d\right )}{\sqrt {c} f}}{8 f}-\frac {(5 b+2 c x) \sqrt {a+b x+c x^2}}{4 f}\)

\(\Big \downarrow \) 1154

\(\displaystyle \frac {\frac {8 \left (-\frac {\left (a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d\right )^2 \int \frac {1}{4 \left (-\sqrt {d} \sqrt {f} b+c d+a f\right )-\frac {\left (-2 \sqrt {f} a+\left (2 c \sqrt {d}-b \sqrt {f}\right ) x+b \sqrt {d}\right )^2}{c x^2+b x+a}}d\left (-\frac {-2 \sqrt {f} a+\left (2 c \sqrt {d}-b \sqrt {f}\right ) x+b \sqrt {d}}{\sqrt {c x^2+b x+a}}\right )}{\sqrt {d}}-\frac {\left (a f+b \sqrt {d} \sqrt {f}+c d\right )^2 \int \frac {1}{4 \left (\sqrt {d} \sqrt {f} b+c d+a f\right )-\frac {\left (2 \sqrt {f} a+\left (\sqrt {f} b+2 c \sqrt {d}\right ) x+b \sqrt {d}\right )^2}{c x^2+b x+a}}d\left (-\frac {2 \sqrt {f} a+\left (\sqrt {f} b+2 c \sqrt {d}\right ) x+b \sqrt {d}}{\sqrt {c x^2+b x+a}}\right )}{\sqrt {d}}\right )}{f}-\frac {\text {arctanh}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right ) \left (12 a c f+3 b^2 f+8 c^2 d\right )}{\sqrt {c} f}}{8 f}-\frac {(5 b+2 c x) \sqrt {a+b x+c x^2}}{4 f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {8 \left (\frac {\left (a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d\right )^{3/2} \text {arctanh}\left (\frac {-2 a \sqrt {f}+x \left (2 c \sqrt {d}-b \sqrt {f}\right )+b \sqrt {d}}{2 \sqrt {a+b x+c x^2} \sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d}}\right )}{2 \sqrt {d}}+\frac {\left (a f+b \sqrt {d} \sqrt {f}+c d\right )^{3/2} \text {arctanh}\left (\frac {2 a \sqrt {f}+x \left (b \sqrt {f}+2 c \sqrt {d}\right )+b \sqrt {d}}{2 \sqrt {a+b x+c x^2} \sqrt {a f+b \sqrt {d} \sqrt {f}+c d}}\right )}{2 \sqrt {d}}\right )}{f}-\frac {\text {arctanh}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right ) \left (12 a c f+3 b^2 f+8 c^2 d\right )}{\sqrt {c} f}}{8 f}-\frac {(5 b+2 c x) \sqrt {a+b x+c x^2}}{4 f}\)

input
Int[(a + b*x + c*x^2)^(3/2)/(d - f*x^2),x]
 
output
-1/4*((5*b + 2*c*x)*Sqrt[a + b*x + c*x^2])/f + (-(((8*c^2*d + 3*b^2*f + 12 
*a*c*f)*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/(Sqrt[c]*f 
)) + (8*(((c*d - b*Sqrt[d]*Sqrt[f] + a*f)^(3/2)*ArcTanh[(b*Sqrt[d] - 2*a*S 
qrt[f] + (2*c*Sqrt[d] - b*Sqrt[f])*x)/(2*Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a* 
f]*Sqrt[a + b*x + c*x^2])])/(2*Sqrt[d]) + ((c*d + b*Sqrt[d]*Sqrt[f] + a*f) 
^(3/2)*ArcTanh[(b*Sqrt[d] + 2*a*Sqrt[f] + (2*c*Sqrt[d] + b*Sqrt[f])*x)/(2* 
Sqrt[c*d + b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + b*x + c*x^2])])/(2*Sqrt[d]))) 
/f)/(8*f)
 

3.1.87.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1092
Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[2   Subst[I 
nt[1/(4*c - x^2), x], x, (b + 2*c*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a 
, b, c}, x]
 

rule 1154
Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Sym 
bol] :> Simp[-2   Subst[Int[1/(4*c*d^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, ( 
2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c 
, d, e}, x]
 

rule 1309
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_.) + (f_.)*(x_)^2)^(q_), x 
_Symbol] :> Simp[(b*(3*p + 2*q) + 2*c*(p + q)*x)*(a + b*x + c*x^2)^(p - 1)* 
((d + f*x^2)^(q + 1)/(2*f*(p + q)*(2*p + 2*q + 1))), x] - Simp[1/(2*f*(p + 
q)*(2*p + 2*q + 1))   Int[(a + b*x + c*x^2)^(p - 2)*(d + f*x^2)^q*Simp[b^2* 
d*(p - 1)*(2*p + q) - (p + q)*(b^2*d*(1 - p) - 2*a*(c*d - a*f*(2*p + 2*q + 
1))) - (2*b*(c*d - a*f)*(1 - p)*(2*p + q) - 2*(p + q)*b*(2*c*d*(2*p + q) - 
(c*d + a*f)*(2*p + 2*q + 1)))*x + (b^2*f*p*(1 - p) + 2*c*(p + q)*(c*d*(2*p 
- 1) - a*f*(4*p + 2*q - 1)))*x^2, x], x], x] /; FreeQ[{a, b, c, d, f, q}, x 
] && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 1] && NeQ[p + q, 0] && NeQ[2*p + 2*q + 1 
, 0] &&  !IGtQ[p, 0] &&  !IGtQ[q, 0]
 

rule 1366
Int[((g_.) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + ( 
f_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[(-a)*c, 2]}, Simp[(h/2 + c*(g/(2*q 
)))   Int[1/((-q + c*x)*Sqrt[d + e*x + f*x^2]), x], x] + Simp[(h/2 - c*(g/( 
2*q)))   Int[1/((q + c*x)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, c, d 
, e, f, g, h}, x] && NeQ[e^2 - 4*d*f, 0] && PosQ[(-a)*c]
 

rule 2144
Int[(Px_)/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), 
x_Symbol] :> With[{A = Coeff[Px, x, 0], B = Coeff[Px, x, 1], C = Coeff[Px, 
x, 2]}, Simp[C/c   Int[1/Sqrt[d + e*x + f*x^2], x], x] + Simp[1/c   Int[(A* 
c - a*C + B*c*x)/((a + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, 
c, d, e, f}, x] && PolyQ[Px, x, 2]
 
3.1.87.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(544\) vs. \(2(245)=490\).

Time = 0.84 (sec) , antiderivative size = 545, normalized size of antiderivative = 1.73

method result size
risch \(-\frac {\left (2 c x +5 b \right ) \sqrt {c \,x^{2}+b x +a}}{4 f}-\frac {\frac {\left (12 a c f +3 b^{2} f +8 c^{2} d \right ) \ln \left (\frac {\frac {b}{2}+c x}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )}{f \sqrt {c}}-\frac {\left (8 \sqrt {d f}\, a b f +8 \sqrt {d f}\, b c d -4 a^{2} f^{2}-8 a c d f -4 b^{2} d f -4 c^{2} d^{2}\right ) \ln \left (\frac {\frac {-2 b \sqrt {d f}+2 f a +2 c d}{f}+\frac {\left (-2 c \sqrt {d f}+b f \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+2 \sqrt {\frac {-b \sqrt {d f}+f a +c d}{f}}\, \sqrt {\left (x +\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (-2 c \sqrt {d f}+b f \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+\frac {-b \sqrt {d f}+f a +c d}{f}}}{x +\frac {\sqrt {d f}}{f}}\right )}{\sqrt {d f}\, f \sqrt {\frac {-b \sqrt {d f}+f a +c d}{f}}}-\frac {\left (8 \sqrt {d f}\, a b f +8 \sqrt {d f}\, b c d +4 a^{2} f^{2}+8 a c d f +4 b^{2} d f +4 c^{2} d^{2}\right ) \ln \left (\frac {\frac {2 b \sqrt {d f}+2 f a +2 c d}{f}+\frac {\left (2 c \sqrt {d f}+b f \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+2 \sqrt {\frac {b \sqrt {d f}+f a +c d}{f}}\, \sqrt {\left (x -\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (2 c \sqrt {d f}+b f \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+\frac {b \sqrt {d f}+f a +c d}{f}}}{x -\frac {\sqrt {d f}}{f}}\right )}{\sqrt {d f}\, f \sqrt {\frac {b \sqrt {d f}+f a +c d}{f}}}}{8 f}\) \(545\)
default \(\text {Expression too large to display}\) \(1477\)

input
int((c*x^2+b*x+a)^(3/2)/(-f*x^2+d),x,method=_RETURNVERBOSE)
 
output
-1/4*(2*c*x+5*b)*(c*x^2+b*x+a)^(1/2)/f-1/8/f*(1/f*(12*a*c*f+3*b^2*f+8*c^2* 
d)*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2))/c^(1/2)-(8*(d*f)^(1/2)*a*b* 
f+8*(d*f)^(1/2)*b*c*d-4*a^2*f^2-8*a*c*d*f-4*b^2*d*f-4*c^2*d^2)/(d*f)^(1/2) 
/f/(1/f*(-b*(d*f)^(1/2)+f*a+c*d))^(1/2)*ln((2/f*(-b*(d*f)^(1/2)+f*a+c*d)+1 
/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+2*(1/f*(-b*(d*f)^(1/2)+f*a+c*d 
))^(1/2)*((x+(d*f)^(1/2)/f)^2*c+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/ 
f)+1/f*(-b*(d*f)^(1/2)+f*a+c*d))^(1/2))/(x+(d*f)^(1/2)/f))-(8*(d*f)^(1/2)* 
a*b*f+8*(d*f)^(1/2)*b*c*d+4*a^2*f^2+8*a*c*d*f+4*b^2*d*f+4*c^2*d^2)/(d*f)^( 
1/2)/f/((b*(d*f)^(1/2)+f*a+c*d)/f)^(1/2)*ln((2*(b*(d*f)^(1/2)+f*a+c*d)/f+( 
2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+2*((b*(d*f)^(1/2)+f*a+c*d)/f)^(1/ 
2)*((x-(d*f)^(1/2)/f)^2*c+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+(b*(d* 
f)^(1/2)+f*a+c*d)/f)^(1/2))/(x-(d*f)^(1/2)/f)))
 
3.1.87.5 Fricas [F(-1)]

Timed out. \[ \int \frac {\left (a+b x+c x^2\right )^{3/2}}{d-f x^2} \, dx=\text {Timed out} \]

input
integrate((c*x^2+b*x+a)^(3/2)/(-f*x^2+d),x, algorithm="fricas")
 
output
Timed out
 
3.1.87.6 Sympy [F]

\[ \int \frac {\left (a+b x+c x^2\right )^{3/2}}{d-f x^2} \, dx=- \int \frac {a \sqrt {a + b x + c x^{2}}}{- d + f x^{2}}\, dx - \int \frac {b x \sqrt {a + b x + c x^{2}}}{- d + f x^{2}}\, dx - \int \frac {c x^{2} \sqrt {a + b x + c x^{2}}}{- d + f x^{2}}\, dx \]

input
integrate((c*x**2+b*x+a)**(3/2)/(-f*x**2+d),x)
 
output
-Integral(a*sqrt(a + b*x + c*x**2)/(-d + f*x**2), x) - Integral(b*x*sqrt(a 
 + b*x + c*x**2)/(-d + f*x**2), x) - Integral(c*x**2*sqrt(a + b*x + c*x**2 
)/(-d + f*x**2), x)
 
3.1.87.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\left (a+b x+c x^2\right )^{3/2}}{d-f x^2} \, dx=\text {Exception raised: ValueError} \]

input
integrate((c*x^2+b*x+a)^(3/2)/(-f*x^2+d),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(((c*sqrt(4*d*f))/(2*f^2)>0)', se 
e `assume?
 
3.1.87.8 Giac [F(-2)]

Exception generated. \[ \int \frac {\left (a+b x+c x^2\right )^{3/2}}{d-f x^2} \, dx=\text {Exception raised: TypeError} \]

input
integrate((c*x^2+b*x+a)^(3/2)/(-f*x^2+d),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument Type
 
3.1.87.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a+b x+c x^2\right )^{3/2}}{d-f x^2} \, dx=\int \frac {{\left (c\,x^2+b\,x+a\right )}^{3/2}}{d-f\,x^2} \,d x \]

input
int((a + b*x + c*x^2)^(3/2)/(d - f*x^2),x)
 
output
int((a + b*x + c*x^2)^(3/2)/(d - f*x^2), x)